圆的周长教学设计
作为一名默默奉献的教育工作者,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么什么样的教学设计才是好的呢?以下是小编精心整理的圆的周长教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆的周长教学设计1
教学目的
1、理解圆周率的意义。
2、理解周长的概念,并掌握圆周长的计算公式和推导过程。
3、能运用公式求圆的周长或直径、半径。
重点
圆的周长计算公式的推导,能利用公式正确的计算。
难点
深入理解圆周率的意义及圆周长计算公式的推导。
教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格
一、复习导入(4分钟)
(一)出示菜板和圆桌图
师:
1、这两个都是什么平面图形
2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)
3、还有什么不同?(圆的大小不同,圆的半径不同)
4、也可以说是圆的直径不同。
(二)出示图与对话框
师:
1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)
2、问:铁皮的长度实际上就是圆的什么?
预设:
1、圆一周额长度(这个长度就是圆的周长)或
2、圆的周长。
二、新课教授
(一)活动一:摸圆的周长(3分钟)
师:
1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。
2、从哪里开始到哪里结束?
预设:
1、从这个地方开始,也在这里结束。
2、小结:起点和终点是同一点。
3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)
4、围成圆的一周的曲线的长是圆的周长。
(二)活动二:周长的测量(4分钟)
师:
1、曲线图形的周长你会测量吗?(不会)
2、同方谈论一下,你想要怎样测量。
3、1生说绕绳法。他的方法听懂的举手。
预设:
1、听懂人多,师演示一下。
2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。
师:
1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。
2、教师观察指导。
(三)汇报演示(4分钟)
师:
1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。
2、这个办法有什么缺点?(不精确会产生误差)
3、除了这个方法还有没有其他办法?
预设:
1、生能主动说出。
2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)
3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。
师:
1、生自己操作
2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。
3、测量中英注意什么?有误差吗?听懂的同学举手。
4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)
(四)动图播放绕绳法和滚动法
1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。
2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。
3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)
4、为什么?(圆的大小或圆的半径、直径不一样)
三、猜想并探索(15分钟)
(一)猜想(4分钟)
1、直径不一样周长就不一样,那周长和直径有什么关系呢?
2、你想把周长和直径怎样比?(周长除以直径、周长减直径)
3、可以研究周长和直径吗?(不可以,每依据)
4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)
5、用你想用的方法研究一下周长与直径的关系。
6、生在黑板上记录“周长÷直径”、或“周长减直径”。
(二)探索(8分钟)
1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。
2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。
3、它叫圆周率,读作π,通常计算式取3.14。
(三)公式推导(3分钟)
1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)
2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?
3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)
四、巩固练习(10分钟)
(一)基础题一道
(二)能力提升两道
(三)拓展题一道
五、课后作业布置
圆的周长教学设计2
教学目标:
1、在观察,测量,讨论等活动中经历探索圆的周长公式的过程。
2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学难点:
理解圆周率的意义。
教具准备:
根据教学任务和学生学习的需要,我所准备的教具有直尺、圆形硬纸板、绳子、剪刀、圆周长演示器。多媒体课件。
学具准备:
学生准备的学具有直尺、圆形硬纸板(大中小各一个)、绳子、剪刀。
教学过程:
一、创设情境
1、出示情境图,让学生观察情境图,了解图中的事情,提出谁的车轮转动一周走的远,为什么?
师:那车轮转动一周,谁的车走得远呢?为什么?
学生自由回答
3、揭示车轮周长概念。
4、讨论:车轮的周长和什么有关,有什么关系?
师引入并板书课题:圆的周长。下面我们继续研究,看看圆的周长和直径还有什么关系?
二、自主探索
(一)测量硬币
1、让学生用准备好的材料测量1元硬币和直径和周长。
师:同桌合作,利用手中的材料测量出1元硬币的周长和直径。
学生活动,教师巡视并参与。
2、交流测量结果和方法,注意测量的过程要交流清楚。
3、计算并观察测量的数据,推测硬币的周长与直径之间有什么关系。
我估的硬币的周长大约是直径的3倍。
大胆推算硬币周长与直径的关系。
(二)测量圆片
1、提出做一做的要求,让学生用教师准备好的圆片测量并计算。
2、交流各组测量和计算结果,然后让学生说一说发现了什么?
三个圆的周长都是它直径的三倍多一些
(三)总结圆的周长公式
1、教师介绍圆周率的发展历程,然后交流感受和启发,进行思想教育。
师:看来,任何圆的周长都是它直径的三倍多一些,其实这个倍数是固定不变的数,我们把它叫作圆周率。板书:圆的周长÷直径=圆周率。
师:由于我们在测量时有误差,所以得不到一个固定值。
师:圆周率可用字母π来表示。板书:π
教师范读,学生齐读,并在桌子上试着写一写。
师:我们今天课上研究的圆周率,早在几千年前,我们古人就开始研究了。
板书:π3.14
2、引导学生根据周长÷直径=圆周率,推导出圆的周长公式并用字母表示。
师:根据圆的周长÷直径=圆周率,如何求圆的周长呢?
生:直径×圆周率=圆的周长
师:如果周长用字母“c”表示,直径用“d”表示,谁来总结求圆周长的公式?
生:c=πd师:板书
师:那如果把直径d换成半径r呢?
生:c=2πr师板书
三、简单应用
让学生试着用公式求圆的周长
课件出示(书中例题和镜子实物图。目的:是让学生能够通过看着实物镜子,去理解金属条的长就是镜子的周长。)
学生自己完成,指名板演
集体订正。
四、交流收获
五、布置作业:83页第一题
板书设计:
圆的周长
圆的周长÷直径=圆周率(π≈3.14)
C=πd或c=2πr
3.14×40=125.6(厘米)
答:这根金属条的长至少是125.6厘米。
圆的周长教学设计3
教学目的
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。
教学重点、难点
推导圆周长计算公式,理解圆周率的意义。
教具准备
圆片、铁圈、绳子、直尺。
教学过程
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。
二、经历探究全程,验证猜想发现。
㈠圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
㈡圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)
【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。
三、感受数学文化,激发情感体验。
1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。
2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
3、介绍计算机计算圆周率的情况。
4、教学圆周率:π≈3.14。
【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。
四、刷新应用能力,总结巩固新知。
1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?
2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)
3、明辨是非:
(1)圆的周长和直径的比的比值叫做圆周率。( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π的值等于3.14。( )
(4)半径是10厘米的圆,它的周长是31.4厘米。( )
4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。
【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。
圆的周长教学设计4
一、素质教育目标
(一)知识教学点
1、认识圆的周长,知道圆周率的意义。
2、理解和掌握圆周长的计算公式。
(二)能力训练点
1、会用公式正确计算圆的周长。
2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。
(三)德育渗透点
1、通过对圆的周长测量方法的探究,渗透化归思想。
2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。
(四)美育渗透点
通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。
二、学法引导
1、引导学生操作、实验,从中发现规律。
2、运用周长公式,指导学生计算。
三、教学重点:
圆周长的计算方法
四、教学难点:
圆周率意义的理解。
五、教具、学具准备:
微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。
六、教学过程:
(一)认识圆的周长
1、创设情境
(屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。
2、迁移类推
(1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)
(2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。
3、实际感知
(1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。
(2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。
(二)测量圆的周长
圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。
学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。
师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?
(三)引导发现圆的周长与直径的关系:
1、圆的周长与什么有关系?
启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?
学生小组讨论后汇报结果。
微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。
引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。
2、圆的周长与直径有什么关系?
(1)测量计算
小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。
请同学汇报所填数据。
观察这些数据,能发现什么呢?
生概括出:每个圆的周长是它直径的3倍多一些。
(2)媒体演示:
屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。
(3)引导概括
其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。
3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。
表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。
教学生读写π,介绍π在计算时如何取值。
学生自己读书中介绍祖冲之的一段知识。
(四)归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
?(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd?或C=2πr
(五)应用圆周长计算公式,解决简单的实际问题。
小黑板出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)
指名读题,自己列式解答(1生板演)
(六)订正时教师强调说明:
(1)解答时不必写出公式。
(2)π取两位小数,计算时就不再看成近似的数了。
(3)计算中取近似值的那一步要用“≈”表示。
完成例1下的做一做,实物投影订正。
(七)看书质疑,全课小结。
(八)课堂练习
1、判断正误,并说明理由。
(1)圆的周长是直径的3.14倍。?()
(2)大圆的圆周率比小圆的圆周率大。()
(3)π=3.14?()
2、求下面各图的周长(只列式不计算)
3、求下面各圆的周长
(1)d=2米?(2)d=1。5厘米(3)d=4分米
r=6分米r=3米r=1。5厘米
分三组进行解答,订正时强调单位名称。
4、解答简单应用题
(1)一个圆形花池,直径是4。2米,周长是多少?
(2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)
(3)一种压路机的前轮直径是1。32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。
(九)课后练习
量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?
圆的周长教学设计5
【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3。1415926---3。1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3。14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3。14倍()
② 圆周率就是圆周长除以它直径的商 ()
③ C =2π r =πd()
④ 圆周率与直径的长短无关 ()
⑤ π> 3。14()
⑥ 半圆的周长就是圆周长的一半()
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6。28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书----看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变----不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12。56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
圆的周长教学设计6
1.简单而富有内涵的引入
余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。
有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。
2.自发而科学严谨的探究
关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!
3.数学思想和文化的渗透
在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!
思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?
圆的周长教学设计7
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
圆的周长教学设计8
一、教学目标
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2.培养学生的观察、比较、分析、综合及动手操作能力;
3.结合圆周率的学习,对学生进行爱国主义教育。
二、教学准备
一元硬币、圆形纸片等实物以及直尺,测量结果记录表
三、教学过程:
<一>、创设情境,引起猜想:
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)
化曲为直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
<二>、实际动手,发现规律:
(一)分组合作测算
1.明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。
2.生利用学具动手操作,师巡视指导、收集信息。
3.集体反馈数据(选取3~4组实验结果,黑板板书展示)
(二)发现规律,初步认识圆周率
1.看了几组同学的测算结果,你有什么发现?
2.虽然倍数不大一样,但周长大多是直径的几倍?
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3.这个倍数究竟是多少呢?我们来看一段资料。
(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5.解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1.如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长=直径×圆周率
C =πd
2.如果知道圆的半径,又该怎样计算圆的周长呢
板书:C =2πr
追问:那也就是说,圆的周长总是半径的多少倍
<三>、巩固练习,形成能力
1.判断并说明理由:π = 3.14()
2.选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()
a.大圆的圆周率大于小圆的圆周率;
b.大圆的圆周率小于小圆的圆周率;
c.大圆的圆周率等于小圆的圆周率。
3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
<四>、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆
绕8字跑,谁跑的路程近
圆的周长教学设计9
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆周长的计算公式。
教具准备:多媒体课件、系绳的小球。
学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳
一、以旧引新,导入新课
1.复习正方形的周长。
①复习周长的意义。什么叫周长?(学生汇报后,课件演示周长的意义)。
②复习正方形周长的意义。(课件演示小花狗围着正方形跑一圈正方形的周长闪动红色)要求小花狗所跑路程,实际上就是求这个正方形的什么?
2.揭示圆的周长。
(1)(课件演示小白狗围绕圆形跑一圈圆形的周长闪动黄色)要求这只小白狗所跑的路程实际上又是求这个圆的什么?(圆的周长,揭示课题)你能说说什么叫圆的周长吗? (教师完成板书,学生读书)
(2)同位用自己带来的圆形实物互相口述圆的周长。
二、探索圆周长与直径的关系
1、动手操作,合作交流。
师问:我们知道了什么叫圆的周长,那么怎样测量圆的周长呢? 可以用什么工具来测量?
①请同学们拿出你们带来的测量工具,以四人小组为单位,想办法测量你手中圆的周长并做好填表记录,(边量边交流测量方法)让我看哪个小组做得最棒。(教师巡视操作过程)
周长(C)直径(d)周长与直径的关系( )
②请四人小组上台演示操作过程,边操作边说方法。
2、探索圆周长与直径的关系(课件演示填表)
(1)请同学们看屏幕的表格,认真观察比较一下,想一想圆的周长跟什么有关系?
(2)讨论:究竟圆的周长与它的直径有什么关系呢?
(小组汇报)引出圆周率
任何圆的周长总是它的直径长度的3倍多一些。(板书)
3、揭示圆周率的概念。
(1)师:科学家的大量准确测量和精确计算得出,表示这个3倍多一些的数,是一个固定不变的数,这个固定不变的数叫什么?请自学99页第二自然段。(叫做圆周率)什么叫圆周率呢?用哪个字母表示。谁能说一说(指导读写π。)
(2)了解圆周率的历史。(课件演示圆周率的历史,对学生进行思想教育和爱国主义教育。)
关于圆周率还有一段历史呢。请同学们打开书看99页下面小的方字,想:通过看书你知道了什么? 我国古代著名数学家祖冲之在计算圆周率方面做出了什么贡献?这个结果比外国数学家得到这个结果整整早了一千多年,可见我国古代人民的智慧和力量。但随着科学技术发展,外国数学家利用计算机已经计算到小数点后一亿多位,我国现在又落后了。哪我们还有机会超过外国人吗?没错只要我们努力学习将来一定会让中国走在世界前列。
(3)推导圆周长的计算公式。
(1)师:通过刚才的探索,我们已经知道圆的周长与直径的关系了,你能推导出圆周长的计算公式吗?(小组讨论)
(2)学生汇报讨论结果,板书:圆的周长=直径×圆周率
那么要求圆的周长,你必须知道什么?(直径或半径)你会求吗?
4. 应用圆的周长公式,解决简单的应际问题。
出示例1(学生自学并独立完成)。教师检查自学情况,请一名同学上台板演。教师评点。
5看书、质疑
(1)若将例1的直径改为半径,会求它的周长吗?
(2)及时反馈,完成第100页(练一练1、2)。
三、运用新知,解决问题
1.下面的说法对吗?并说明理由。
(1)圆的周长是它直径的π倍。()
(2)大圆的圆周率大于小圆的圆周率。()
(3)π=3.14()
2.解答练习二十一第2题(课件演示)
3.测量一圆形实物直径,计算它的周长。
4、扣展练习
(1)画一个周长12.56厘米的圆
(2)思考题。(课件出示两只蜜蜂分别在一个大圆和两个小圆上走一圈)大圆的周长和两个小圆的周长之和同样长吗?为什么?
四、总结全课,学生互评。
这节课你学到了什么?谁的表现最佳?
板书设计:
圆 的周长
围成圆的曲线的长叫做圆的周长
任何圆的周长总是直径的3倍多一些(圆周率)
例1、一块圆形铝片的直径是5厘米,它的周长是多少?
圆的周长教学设计10
教材分析:
这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的'生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。
教学目标:
1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。
2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。
3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。
教学重点:
通过多种数学活动推导圆的周长公式,能正确计算圆的周长。
教学难点:
圆的周长与直径关系的探讨。
教学准备:
多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。
教学过程:
一、把准认知冲突,激发学习愿望。
1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)
2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)
3.指名一生说说正方形的周长计算方法:(生:边长4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)
二、经历探究全程,验证猜想发现。
(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。
1.谈话:那什么是圆的周长呢?(课件出示3个车轮)
2.师:上面的3个数据是表示什么的?(生:圆的直径)英寸是什么意思?(学生看书回答)
圆的周长教学设计11
教学目的:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
1、理解圆周率的意义。
2、推导并总结出圆的周长的计算公式并能够正确计算。
教学难点:
深入理解圆周率的意义。
教学过程:
一、复习准备:
(一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?
(二)创设情境:龟兔赛跑。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
二、新授教学。
(一)定义。
1、小乌龟跑的路程就是正方形的什么?小白兔呢?
2、什么是圆的周长?请你摸一摸你手中圆的周长。
3、今天我们就来研究圆的周长。
(二)推导圆的周长公式。
1、学生讨论。
(1)正方形的周长和谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2、猜测。
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?
3、实践操作。
(1)目的:用不完全归纳法得出圆的周长约是直径的几倍。
(2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。
(3)填写表格。
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(4)汇报小结
看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?
(三)认识圆周率、介绍祖冲之。
1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。
2、介绍祖冲之。
(四)总结圆的周长公式。
1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=d
2、圆的周长还可以怎样求?
教师板书:C=2r
3、圆的周长分别是直径与半径的几倍?
(五)课堂反馈。
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
三、巩固练习。
(一)判断。
1、=3.14()
2、计算圆的周长必须知道圆的直径。()
3、只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1、较大的圆的圆周率()较小的圆的圆周率。
a大于b小于c等于
2、半圆的周长()圆周长。
a大于b小于c等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。
四、课堂小结:
通过这堂课的学习,你有什么收获?你还有什么问题吗?
五、课后作业。
(一)求下面各圆的周长。
1、d=2米
2、d=1.5厘米3.d=4分米
(二)求下面各圆的周长.
1、r=6分米
2、r=1.5厘米
3、r=3米
六、板书设计。
圆的周长
C=dC=2r
单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
活动要求:
1、各个组成部分面积分配合理,布局合理。
2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。
3、要有娱乐活动场所、休息场所、小路。
4、算出各个部分的面积。
圆的周长教学设计12
教具、学具准备:
多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。
教学过程:
一、 认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?
(生齐鼓掌!)
师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?
(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?
(板书课题:圆的周长)
(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
二.测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)
(2)师:除此以外,还有别的方法吗?
方法二:把圆放在直尺上滚动一周。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
三、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?
(圆的周长与直径有关系。)
师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。
(生实际测量、计算、填表)
3.展示汇报
师:哪一个小组愿意来汇报你们的数据。
师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)
师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?
4.揭示规律
师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!
屏幕出示图3:
师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?
(圆的周长总是它直径的3倍多一些)
师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。
5.介绍小知识。
师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)
五、揭示圆的周长计算公式
师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?
(测量出它的直径)
师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)
师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)
(板书:C=πd)
师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?
(板书:C=2πr)
练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?
学生独立计算。汇报:唐老鸭跑的路程更远。
六、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(课件出示)
(1)学生独立完成,汇报,弄清列式的依据。
(2)小结:已知直径求周长可直接套用公式。
2.通过媒体演示指导学生完成"做一做"作业。
饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?
小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.
五、总结,质疑,看书内化。
师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。
六、巩固练习。
1.判断。
(1)圆周率就是圆的周长和直径的比值。
(2)π=3.14。
(3)半径的长短决定圆周长的大小。
(4)同圆中,周长是直径的π倍。
2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?
3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?
4.求半圆的周长:d=6厘米(图略)
圆的周长教学设计13
一、教学目标:
1. 让学生知道什么是圆的周长,《圆的周长》教学设计及反思。
2. 理解并掌握圆周率的意义和近似值。
3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。
4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。
5. 结合圆周率的学习,对学生进行爱国主义教育
二、教学重点:推导圆周长的计算公式,准确计算圆的周长。
三、教学难点:理解圆周率的意义。
四、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等
学生:2个大小不同的硬纸圆片、直尺、彩带、学具。
五、教学过程:
(一)、认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)
师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)
每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
(二).测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
【方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?
【方法二:把圆放在直尺上滚动一周,教学反思《《圆的周长》教学设计及反思》。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!(生齐笑)
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
(三)、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?
师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。
①测量计算。
让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。
②汇报、展示。
让学生汇报自己的测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。
③观察、发现。
让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)
(3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。
①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的周长÷直径=圆周率)
②介绍圆周率的表示字母π及其读写法。
③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。
(四)总结圆周长的计算方法。
1、根据圆周长与直径的关系,
你能推导出圆的周长计算公式吗?指名回答,
引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。
师:现在,你能求出谁的路程长吗?为什么?
(五)、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
2.练习题
板书设计
圆的周长测量:滚动法 绳测法
规律:圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率C=πdC=2πr
教学反思:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。
圆的周长教学设计14
一、设计思路
本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。
二、教学过程与设计意图
教学目标:
1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。
2、结合教学内容进行爱国主义教育,激发学生民族自豪感。
3、培养学生大胆猜想、勤于思考、勇于探索的优良品质。
教学重点:掌握理解圆的周长公式推导过程
教学过程:
A、创设情境·激疑——提出问题
(出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?
(学生思考后师出示有计数器的跳绳作提示)
(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。
(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。
(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。
(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?
设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。
B、师生共同提出假设
(1)请学生回忆正方形周长和边长的关系(边长×4)。
(2)师:能不能求圆周长时也找到这样的倍数关系呢?
(3)师:测量的圆的什么比较方便呢?生答:半径、直径
(4)师:请学生先画几条长短不一的线段作直径画圆
(5)师:观察自己画的圆你发现了什么?
学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系
(6)师:你估计周长是直径的几倍?
学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右
(7)师:你有办法验证吗?学生讨论
演示:用绳绕的方法验证(3倍多一点)
设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。
C、探索问题解决的方法·发现——构建新知
(1)师:你还有别的办法研究圆的周长和直径的关系吗?
(可以用绳绕滚动的办法分别测量一些圆的周长)
(2)学生在小小组内动手操作、测量进行验证
直径(厘米)周长(厘米)周长是直径的几倍
26.23倍多一点
39.13倍多一点
412.93倍多一点
(3)小结
a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)
b、结合圆周率进行爱国主义教育
师生共同推导计算圆的周长公式:(C=лd或C=2лr)
D、运用新知识解决数学问题
(1)学生尝试例题求圆的周长
(2)基本练习(略)
设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。
E、评价体验
(1)师:这节课研究了什么?
生1:周长和直径的关系
生2:圆的周长=直径×圆周率,即C=лd或C=2лd
(2)师:(出示一棵古树图片)你能测量它的直径吗?
生答:砍下来量一量
师问:这个方法简单,你们同意吗?学生思考后回答:
生1:用绳子绕一圈,这就是周长然后用周长除以л就得到直径
生2:在古树中间钻个小孔,量一量
生3:用四个木头搭成一个正方形,边长就是直径
(3)师:你能根据今天所学的知识计算你家到学校大约有多远吗?(用计数器的跳绳作提示)学生讨论后回答:
生1:量一量车轮的直径算出周长,再数数车轮转动了几圈,算一算就行了。(师提醒:那不是最安全)
生2:用根长绳让它跟着轮子转
生3:装一个象跳绳一样的计数器,再算一算。
师:对!摩托车的里程表就是根据这个原理,它就像一个乘法运算机器,车轮的周长是固定的,转数是变动的,从你家到学校的距离之所以能显示在里程表上,就是车轮周长乘以转动的圈数得到的。
设计意图:通过学生动手、动脑、动口,自主地探究知识,发现已知直径(半径)求圆周长的方法,并通过一定的基本训练后学生已经形成了一定技能,如何再让这些数学知识回到生活,让学生感到所学的数学知识有用呢?我设计了测量一棵古树的直径和计算你家到学校大约有多远这样两个问题,为学生提供广阔的讨论空间,因为这些问题就在学生的身边,会让学生感到“有想头”、“有意思”,学生也愿意反复讨论这些问题。这样可以点燃学生的创新意识、创造性思维的火花。
三、实践反思
1、联系学生生活实际,有利于激发学生学习的兴趣。
华罗庚指出,对数学产生枯乏味、神秘难懂的印象的原因之一便是脱离实际。本节课一开始出示摩托车的里程表,有计数的跳绳,是学生非常熟悉的,贴近学生生活的实际,体会到“圆的周长”和我们的生活是息息相关,大大调动了学生学习的积极性,并为后面学生解决一些实际问题,培养学生的创新意识埋下伏笔。
2、让学生带着问题去学习,有利于学生主动探索知识
美国数学家哈尔莫斯(P.Rhalmos)有句名言:问题是数学的心脏。我国著名教育家顾明远也说过“不会提问的学生不是好学生”,“学问就是要学会问”。但是怎样才能让学生感到有问题呢?教师必须启发学生主动想象,去挖掘去追溯问题的源泉,去建立各种联系和关系,使学生意识到问题的存在。我在本节课先创设一个问题情境,使学生感悟到:必须先要知道圆的周长,而直接测量圆的周长很麻烦,有没有更简单的办法?促使学生去寻找解决问题的办法,通过“猜想——验证”“探索——发现”圆周长的计算方法后,又提出测量一棵古树的直径你有什么好主意?如果测量你家到学校的距离你有什么办法?这是两个和学生生活紧密结合的问题,学生有感而发的方法有很多,学生的回答应该说是非常精彩的,这既让学生灵活运用了圆周长公式(可以测量周长再计算直径)并呼应了课堂的导入,又激发了学生的学习兴趣,激活了学生的思维,培养了学生的创新意识。其效果真可谓“鱼与熊掌”兼得。
3、提高应用意识,努力体现课堂教学的开放性。
生活问题数学化,数学知识生活化,把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有利于提高学生灵活应用知识的本领,我在本节课的最后部分安排了两个生活问题,并都是“以你……”的语气陈述,努力使学生能身临其境,当解决问题的主人,提高学生的应用意识,由于我们身边的问题答案往往不是唯一的,如计算你家到学校大约有多远?许多同学都想到先数自行车车轮转了多少圈,用周长乘以圈数,对于怎样数车轮有的同学提出直接数,还的同学甚至想到了用一根长绳让它跟着轮子转,看看它转了多少圈(这些都是学生直接的生活经验),也有一些同学提出了在自行车上装一个计数器的办法,不但培养了学生开放型的思维方式,还激发了学生去动动手的愿望。
4、要讨论和研究的问题
(1)在用绳绕的方法验证周长是直径的三倍多一点,有没有必要再让学生去实践,通过计算再验证周长和直径的关系?
(2)如果在发现知识过程中人有一小部分同学得出了方法,教师是想设法再让其他学生继续探究、发现,还是让这些同学代替老师把答案告诉大家呢?
圆的周长教学设计15
一、教学内容:圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.
2.培养学生的观察、比较、分析、综合及动手操作能力.
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.
4.结合圆周率的学习,对学生进行爱国主义教育.
三、教学重点:
1.理解圆周率的意义.
2.推导出圆的周长的计算公式并能够正确计算.
四、教学难点:理解圆周率的意义.
五、教学过程:
一、 创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长.
3、师:今天我们就来研究圆的周长。并出示课题
二、引导探究,学习新知
(一)推导圆的周长公式
1.学生讨论
(1)正方形的周长跟谁有关系?有什么关系?
(2)你认为圆的周长和谁有关系?
2.猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?
3.动手操作
(1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。
师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
(2)整理并填写表格。单位:厘米
测量对象
圆的周长
圆的直径
周长与直径的比值
(3)汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?
(三)认识圆周率、介绍祖冲之
1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.
π≈3.14
2.介绍祖冲之
(四)归纳圆的周长公式
1.怎样求周的长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:c=πd
2.圆的周长还可以怎样求?由于d=2r 则:c=2πr
师板书:c=2πr
师问:圆的周长分别是直径与半径的几倍?
三、巩固应用,强化新知
(1)求下面各圆的周长.
1.d=2米 2.d=1.5厘米
(2)求下面各圆的周长.
1.r=6分米 2.r=1.5厘米
(二)判断题
1.π=3.14 ( )
2.计算圆的周长必须知道圆的直径. ( )
3.只要知道圆的半径或直径,就可以求圆的周长. ( )
(三)选择题
1.较大的圆的圆周率( )较小的圆的圆周率.
a 大于 b 小于 c 等于
2.半圆的周长( )圆周长.
a 大于 b 小于 c 等于
(四)课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
(五)实践操作
请同学们,画一个周长是12.56厘米的圆,
先以小组为单位讨论:画多大?如何画?再操作。
四、课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
【圆的周长教学设计】相关文章:
1.圆的周长教学设计